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LETTER TO THE EDITOR 

A simple and accurate theory of short-range order in 
alloys 

V I Tokar, I V Masanskii and T A Grishchenko 
Institute of Metal Physics, Academy of Sciences of the Ukrainian SSR, 36 Vernadsky 
Street, 252680, Kiev-142, USSR 

Received 13 August 1990 

Abstract. We propose a very simple method of calculating short-range order parameters CY,, 
in disordered alloys using a series expansion in powers of a parameter y = exp(-l/E) 
where E is the dimensionless correlation length of the pair correlation function. In our 
approximation the sum rule a,, = 1 is satisfied exactly, unlike in previous theories. In the 
zeroth order our approach leads to the spherical model results. The high accuracy of the 
theory developed is illustrated by comparing its results with those of Monte Carlo simulation 
and estimating the pair interactions from diffuse scattering data. In the latter problem 
pair-interaction potentials are explicitly expressed in terms of experimentally determined 
quantities. 

The problem of finding a theoretical description of short-range order (SRO) in alloys is 
widely discussed. One of the reasons for this is that the Fourier transform of the pair 
correlation function (PCF) is proportional to the directly measured intensity of x-ray 
or neutron diffuse scattering (see, for example, Krivoglaz 1969). To interpret the 
experimental data, the Krivoglaz-ClappMoss (KCM) theory (Krivoglaz 1969) is exten- 
sively used. However, it is essentially based on the mean-field approximation in which 
correlations are ignored from the very beginning (Brout 1965), and leads to quan- 
titatively incorrect results (Gilder and Vignesoult 1984, Stark eta1 1983). In addition, the 
well-known sum rule mi; = 1 where aii is the Warren-Cowley SRO parameter (Krivoglaz 
1969), i and j being lattice sites, is not satisfied in the KCM approximation. At the present 
time there is a possibility of calculating SRO parameters or diffuse intensities more 
precisely in the framework of the cluster variation method (CVM) at the different levels 
of approximation (Kikuchi and Sat0 1974, Mohri et a1 1985) or of the cluster field method 
(CFM), its recently developed simplification (Vaks et a1 1988, 1989). Unfortunately, in 
these fairly sophisticated calculations the sum rule is also violated. 

Several authors have considered the spherical model (SM) (see, for instance, Ziman 
1979) as an alternative to the KCM theory (Philhours and Hall 1968, Hoffmann 1972). 
Hoffmann has pointed out an interesting circumstance in which the SM results for 
correlations are rather good and, in particular, far exceed KCM ones in accuracy. More- 
over, the SM satisfies the above-mentioned identity. Here we show that developing an 
approach in which the SM is obtained as the zero-order approximation and the sum rule 
is fulfilled is not accidental. As will be argued below, our theory leads to very accurate 
results. 

0953-8984/90/5010199 + 06 $03.50 @ 1990 IOP Publishing Ltd 10199 



10200 Letter to the Editor 

The Hamiltonian under consideration is that of the Ising model for binary alloys, 

H = - 4 V,p,p, - P p 1  
I +I I 

where Vl, is the pair ordering potential, p l  the occupation number and ,U the variable 
playing the role of chemical potential (de Fontaine 1979). The corresponding partition 
function (more precisely, the generating functional for Green functions) is (Vasil'ev 
1976) 

Z[A] = C J Dq exp(&Aq + / 3 p q  + cAq + F ( q )  + q A )  (1) 

where 

exp F ( q )  = S ( q  + c - 1) + S ( q  + c)  

q (A) is the (source) lattice field, /3 = l /kBT the inverse temperature and A = PV. To 
proceed with the irreducible PCF, we have introduced the average c of the lattice field 
and its fluctuation q. We have used reduced notation in which summation over site 
indices is implied. 

From the expression (1) the following equations for m and the PCF can be derived 
(Tokar 1985) 

where 

R[ql = e x p [ W / a d G ( a / a d l  exP( -m:q?  + P w  + C A 9  +F(d) 
is a generating functional for the S-matrix and G and 2 are, the PCF and self-energy, 
respectively, which are connected by the usual relation 

G = ( - A - Z ) - ' .  (4) 
To solve equations (2) and (3) we use the series expansion in powers of a parameter 

y = exp( - 1/5) where f is a correlation length of the PCF measured in units of distance 
between nearest neighbour (NN) sites (Tokar 1985). This expansion is based on the 
exponential decrease of the PCF away from critical points with increasing distance (see, 
for example, Ziman (1979), ch 1) 

G,, = ~ ( i  - j )  exp( - / i  - j I /E)  = ~ ( y l ~ - j l )  

where F(i) is a function varying at a less than exponential rate. Let us consider for 
simplicity the disordered phase in which all quantities depend only upon the distance 
between sites. Below, the subscript 's' denotes the matrix elements corresponding to the 
sth coordination shell. We find that the off-diagonal part of the self-energy is of order 
y 2 ,  except for in the case of equiatomic alloys in which it is of order y 3 .  The corresponding 
low-order expression for 2 in the case of cubic lattices is 

Z1 = Aa: + Ba: 
2,  = A a :  s = 2 , 3  

2$ = 0 s > 3  
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A = $ ( 1 - 2 ~ ) ~ / [ c ( l - c ) ] ~  B = ~ { [ 1 - 6 ~ ( l - c ) ] ~ - 3 ( 1 - 2 c ) ~ } / [ c ( l - c ) ] ~  

where c is the concentration, a, = G,/c(l - c). 
In the case under consideration equation (4) becomes 

where 

~ o = - c ( l - c ) E o  ~ , = - c ( l - c ) ( A , + E , )  s a l  (6) 

and the elements of the a-l matrix, and 

A,(k) = 2;' 2 exp(ikj) Ao(k)  = 1. (7) 
(S) 

Integration in ( 5 )  and summation in (7) is over the Brillouin zone of volume Q and 
ovqr the sth shell of which 2, is the coordination number. The identity a. = 1 in our 
approximation turns out to be simply a consequence of the equations (2) and (3) at i = 
j. It completes the set of equations for quantities a, and a. (or Eo). An explicit expression 
for the latter quantity can be obtained by inserting the sum rule into the exact relation 

which immediately follows from ( 5 ) .  Inserting, in turn, (8) into ( 5 )  we obtain the set of 
equations for SRO parameters with the level of approximation being determined by the 
expression for the off-diagonal part of E.  We have already seen above that this quantity 
is at least of order y2. Setting, therefore, E, = 0 in the zeroth order for alls a 1 we obtain 
the SM result. To obtain the KCM result, the last term in the left-hand side of equation 
(8) has to be neglected completely, so the sum rule is violated. 

Our approach leads to particularly simple results when setting As = Zs = 0 for all 
s > 1. In this case one can easily derive, from ( 5 ) ,  the expression a, = PO' ( x ) P , ( x ) ,  
where the auxiliary variable x is found from the equation 

P,(x) = Z l ~ ( l  - c)(A, + E l )  

and 

is the NN interaction Green function, which can be expressed for the cubic lattices in 
terms of the complete elliptic integral (Morita and Horiguchi 1971). 

In figure 1 we show the temperature dependence of the NN SRO parameter for three 
concentrations in the case of NN interaction on FCC and BCC lattices calculated according 
to ( 5 )  and (8). Our results are compared with thoseof a Monte Carlo simulation (Bichara 
et aZ1982). Here, three successive approximations have been used: 

(i) a spherical model in which the off-diagonal part of the self-energy is neglected 
(zero order in y ) ,  

(ii) E l  = Am:, X, = 0 for all s > 1 (second order in y ) ,  
(iii) E l  = Aa: + Ba:, Z 2  = A a : ,  Z, = 0 for all s > 2 (third order in y ) .  
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Figure 1. Variation of the NN SRO parameter a, versus reduced temperature T* = A-'  in the 
case of a NN interaction on ( a )  FCC and (b)  BCC lattices for concentrations c = 0.5 (upper 
group of curves), c = 0.3 (middle group) and c = 0.1 (lower group). Circles denote Monte 
Carlo results (Bichara etal 1982); data have been read off from their figures. Approximations 
(i)-(iii) (see text) have been used (short-dashed, long-dashed, and full curves, respectively). 
In the case c = 0.5 approximations (i) and (ii) give identical results. 

It is seen that even zero-order approximation leads to reasonable agreement with the 
simulation data, especially when the concentration is large. The results obtained in the 
following two approximations demonstrate rapid convergence and agree remarkably 
well with the Monte Carlo ones. 

The inverse problem, namely the determination of the pair interactions from diffuse 
scattering data, is also of considerable interest. Our theory gives the explicit expression 
for these interactions (see equation (6)) 

V ,  = - kBT(a,/c(l - c) + E,) s 3 1. (9) 

The right-hand side of this relation is a combination of quantities as and a, = (a-'), 
which can be determined experimentally, as explained by Vaks etal (1988). To illustrate 
this result, we apply it to the interpretation of neutron measurements of Lefebvre et a1 
(1981) for the Ni0,765Fe0,235 alloy and compare the results obtained with those of the CFM. 
Corresponding values of pair potentials are given in table 1. The results appear to be 
very close. The discrepancy between those for V2 is probably connected with the fairly 
large a2values (see Lefebvreetall981). Taking into account that the agreement between 
the CFM and the best available octahedron-tetrahedron CVM approximation (Mohri e? a1 
1985) is quite good, as has been argued elsewhere (Vaks et a1 1988), we have further 
evidence of the high accuracy of our approach. 

In conclusion, we have developed the theory Of SRO in disordered alloys which leads 
to the simple equations for SRO parameters and provides an explicit solution for the 
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Table 1. Pair potentials V, (in K) as obtained in the CFM and in the present work at the 
different levels of approximation. Our approximations are denoted as SM (E, = 0 for all s), 
a2 (X, = Am:), and CY’ (X, = A a j  + Ba:). For those Of CFM, see Vaks et a1 (1988). 

CFM Y -- 
KCM SM 

2 cy2 TI 7-2 T3 T4 Ts 
6 cr3 658K 745 K 780 K 808 K 958 K 

-VI 432 635 
766 684 
678 694 

v2 225 331 
311 232 
258 

- v3 12 18 
17 19 
17 

- v4 8 12 
12 
13 

v5 0 0  
0 

-1 

v h  5 7  
7 

- v7 19 28 
28 

VU -13 -19 
- 19 

VY, -10 -15 
- 15 

v9, -20 -29 
- 30 

511 664 
781 717 
711 727 

195 253 
242 170 
205 

38 49 
50 50 
49 

11 14 
15 
16 

19 25 
24 
25 

20 26 
26 

1 1  
1 

16 21 
21 

6 8  
8 

4 5  
5 

494 622 
720 671 
663 680 

225 283 
271 206 
238 

34 43 
43 43 
42 

21 26 
27 
27 

17 21 
22 
22 

15 19 
19 

12 15 
15 

7 9  
9 

-6 -8 
-8 

6 8  
8 

476 647 
746 690 
690 698 

226 307 
292 240 
254 

19 26 
26 26 
25 

6 8  
9 
9 

-4 - 5  
-5 
-6 

20 27 
27 

10 14 
14 

2 3  
3 

10 14 
14 

-3 -4 
-4 

568 676 
765 713 
717 719 

155 184 
180 155 
159 

56 67 
67 67 
66 

39 46 
46 
47 

10 12 
12 
12 

-7 -8 
-8 

4 5  
5 

-16 -19 
- 19 

7 8  
8 

9 -11 
-11 

inverse problem of restoring pair potentials from diffuse scattering data. Both problems 
are solved with high accuracy. 
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